“都不是。但2029年上班的第一个月,我的团队就招募了四位顶尖的认知神经学家。其中一位是你的剑桥校友,你们认识。接下去两年我就差跟他们睡觉了。”
爵士笑着说声“真有钱”就坐下了。他身边的嘉德接过来:“也就是说你还是个外行。请问这里有专业人士吗?他刚才说的是权威理论,还是华丽的想象?还有,这些跟我们今天的主题真的有关吗?”
会场安静了片刻。
瑞士代表团一位女士怯生生站起来:“我在海德堡大学教过二十年神经生理学,也许能给个参考。图先生刚才讲的,原则上很准确。只是……省略了很多细节,经过高度抽象。我刚才听起来也像是才明白。”
图海川向她鞠了一躬:“谢谢您证明我的大脑还在正常工作。嘉德女士,我向你担保,刚才这些问题关系重大。因为下面我就要讲为什么别人造不出来,我却造出来了。
“当今的概率学ai做法很精明。他们不去妄想整个世界的数据,而是专攻非常狭窄、非常单纯的一点。比如规则简单到极致的围棋。阿尔法狗上手先看几百万张棋谱,这比任何人加上他的所有祖先能下的棋还要多得多。所以人永远下不过狗了,这样看没有任何意外。课题稍微宽泛一点,概率学ai的吃力程度就指数上升。因为它的架构原则不是为复杂数据准备的,缺乏通用潜力,更没有几亿年累积的世界模型。比如人脸识别,ai最成功的领域之一。从上个世纪开始搞了八十年左右,投入不计其数的智慧、金钱和算力,计算过上百亿张脸,现在ai终于超过人了。还不是完全超越,抗干扰能力和跨年龄识别还远远比不上。大脑呢?刚才那个吃奶的婴儿就会识别人脸。等他八十岁的时候,还能识别八岁时见过的脸!
“正是这样成功的例子,让我在2029年接近完全绝望。这个世界太大、太复杂,数据量无限。我们用概率学ai攻克人脸识别这样一个小小的领域都需要八十年的消耗战,什么时候才能建成一个世界模型?”
图海川的声音变低了,眼睛不再看听众,似乎坐在那里自言自语。听众们全神贯注,跟着浸入2029年那颗独自沉思的大脑之中。
“我想不起从哪天开始,意识到互联网的结构和大脑极其相似。分布式网络,不是设计的而是生长的,自然适应物质世界环境,自然分层,自然分区,底层节点连接着无数感官,接受无数种信息,被这些信息塑造,继续生长。它就在那里。我可能一直都知道。
“但是互联网极端复杂的数据结构和通信协议蒙蔽了我的眼睛,让我不敢向那扇门迈出一步。门后面的东西太庞大、太复杂,而我想要的是简化——直到我认识王招弟博士。万国宝的诞生,第三位需要感谢的人是她。如果说我是一个大号反应池,乱七八糟的东西都腌在里面慢慢发酵,王博士就是一道闪电,瞬间点燃所有反应。”
礼堂中每一双眼睛都转向第六排。王招弟面不改色,仿佛说的是别人。张翰在她旁边,倒被闪得埋头打了个喷嚏。
“我面试她用了25分钟。那时我准备的一堆问题才问到三分之一,问她为什么对自然语言翻译ai感兴趣。她答道:‘语言是头脑之间的通信协议。一百年前世界人民离得很远,各说各的,也就罢了。现在有了互联网,大家直接交谈。但自然语言太多,协议太乱接口太差,白瞎了互联网统一的基础协议。难道不该改进一下吗?’
“面试马上结束。王博士成了我的合作伙伴。我送她出门之后,一个人在走廊里来回横跳。这个面试让我突然明白了,万国宝项目到底站在什么位置上。互联网真正的神经元是人,是几十亿颗大脑!他们已经进化了几百万年,所有底层构建齐备!互联网本身进化了将近一百年,但它的速度比自然进化快千万倍!它就在那里,数据饱胀得无法理解,通信密集得快要爆炸,只等出现一个机制,向上简化!而万国宝,如果按我的想法做成了,就是那统一的数据结构,统一的协议!以前吓倒我的那些复杂细节,现在看来无关痛痒。它和大脑一样,需要的只是连接。统一定义、可以抽象、可以产生概念的连接。这不就是语言吗?霍桑说得再准确不过:我想造一颗大脑,所有大脑组网形成的大脑,比我们更高一层的智能,互联网的灵魂。所有条件已经准备好了。”
张翰经历了周克渊的当头棒喝,今天已经不再震惊。他左看右看听众的神情,猜想那天自己像谁。
“声明一点:2029年的我太过狂妄,没有看清整个局面。今天的世界是这个样子,证明我只对了一半。还有一条路可以走通,建立在概率学ai基础上的道路。究竟是怎么走通的,我到今天也不太明白。我讲完之后,希望戈德曼博士可以教我们。”
戈德曼进入会场以来一言不发。现在置于炉火之上,终于站起来:
“你刚才讲的前半段,我想打瞌睡;后半段,我想回去把你的雕像摆在书桌上。如果我说‘我没有什么可以教的’,你还会继续教我们吗?”
“中国邀请各位远道而来,不是来听我半途而废的。”
“很好。我没有什么可以不教给各位的。”
会场响起低低的笑声。
戈德曼紧盯着图海川:“2029年的你,不能叫狂妄。是恰到好处的智慧给了你信心,恰到好处的无知给了你勇气。如果霍桑把你拉进了谷歌,或者稍微向你透露另一条路可能怎么走,我相信你不会有胆量自己找路,还干了这么大一票。霍桑这老家伙,有用和没用也都恰到好处。”
图海川想了想说:“很可能。然而我这些想法不是什么独家秘方。核心原理也是一位美国前辈教给我的。”
国务卿和兰道同时出声:“谁!?”
“杰夫·霍金斯。2004年他写了一本书:《论智能》,公开出版。我刚才讲的大部分原则和对大脑智能的理解,都从这本书而来。”(注:《论智能》:onintelligence,jeffhawkins。中文版译名为《人工智能的未来》,2006年出版。)
美国代表都转脸看着戈德曼。他点了点头,小声嘀咕:“谁知道杰夫蒙对了呢?”
图海川有点惊奇:“你们不认识他吗?他可是最早做掌上电脑的人!国务卿先生,今天我带了作者签名的《论智能》初版,可以送给你。”
他真的从文件袋中掏出一本翻得毛茸茸的蓝皮简装书,举在空中。
“谢谢不用。我想读的书都自己买。”
前三排的人反应极快,一大片手马上举起来。图海川扔过去,一位幸运的译员抢到了。
张翰在王招弟耳边说:“活久见,图老师居然有摇滚明星范!是你教他的?”
王招弟笑而不答。
礼堂中热闹了一阵。两位ai大师互相抬轿虽然肉麻,各国代表听着都暗自宽慰。看来,两国也不是注定要干一票大的。
「–」
“我们立即开始工作。以前的成果完全推翻,从基础架构重新开始。这些工作非常艰巨,也非常琐碎,今天没有时间介绍完,我举几个底层和高层的例子。第一个决策是绝不给它词典。准许它连接人类编写的词典是七年之后的事了。在那之前,我们已经悄悄用它帮助修订了《新华字典》2036版。”
张翰听见后排中国随员中有人嘀咕:“我说干嘛那么急出新版……”
“开头两年我们的进步非常慢。我采纳王博士的建议,从语音而不是文字开始。一个单音节汉语字‘人’,为了让万国宝网络对所有真人发音产生自发连接,用了整整一年!男女老少,普通话的ren,吴语的nin,四川话的zen,粤语的yaen……训练它的方法,仍然是概率学ai那一套:把真人说话的语境数字化,用大规模统计来建立概率连接。我们的新设计并不排斥概率学ai方法,只是把它限制在感官接口和底层连接实现上。自然进化需要千万年实现的东西,我们摘了同行的果子。
“跨语种时,第一选择当然是英语。原以为会更慢,没想到只用了1/20的时间。事后想来这是必然的:万国宝把各种汉语中的‘人’发音连起来之后,已经向上抽象了一层。在那里,它有了一个概念,虽然它还无法用其它词语表述。但摸到英语时它很快发现下面连接的都是类似的语境,于是在上面那一层直接建立连接!语法对它来说根本不存在,它对‘相似’或者‘同义’的判断,根据来源于底层的底层:真实世界。
“从语言到文字的连接更是快得出乎意料。我终于明白了王博士的直觉:文字本身就是符号化的、经过抽象的语音。它介于我们定义的第一层和第二层之间,不能用来打地基。然而,我们在头一年咬牙磨出来的原始连接,被文字插在中间双向传导,整个概念网络的扩展速度提高了一个数量级。
“2032年团队全体放大假,王博士带我们去语言学家的天堂——新几内亚玩。在岛上,当地的土著和她又给了我几道闪电。
“第一道是和土著强行交谈时被闪到的。我和土著一对一,两个人连说带比,半天也没什么进展。比如我指着自己说‘我’,他怎么知道我的意思是人称代词,是名字,是‘你的主人’,还是‘文明的灯塔’?然而双方三对三,效率立即提高几十倍。我可以指一圈:‘我’、‘你’、‘他’、‘他’、‘他们’。这样一搞,双方还立即明白了汉语第三人称只有单数复数,而土著语有单数、双数和三数。在这之前,我们出于谨慎,真人实验网络规模都比较小。回国后我就大肆扩张,寻找一切机会让万国宝吸收大人群的数据。最狠的一招是单向连接了全国中学生用来学英语的手机ai。那个ai本身很差,但它的原始数据无价,每天18小时不限量供应。
“在岛上王博士就笑话我:人群网络越大,两种语言自然通译越快。这是语言学的abc,我怎么捡着当宝贝?但我也有她没注意到的领悟:那根用来指人的手指。
“回去之后,我招了一组人研究tensorflow上谷歌透镜模式识别的内核架构,把它做成标准附件,强制万国宝连接语言时用这个识别器同时处理情景中的图像和视频。网购平台本身还有个常备手指:当前宝贝——sorry,当前商品。现在除了语境匹配,加上了数据量大得多的情景匹配。我们又摘了果子,网络向上生长的效率又提高了几十倍……”
技术代表们哗然,似乎都瞬间打通了任督二脉。国务卿脸上见汗,瞟了戈德曼一眼,奇怪这种人为什么没有早点死绝。
“最后、最大的一道闪电,还是王博士炸出来的。各位第一次听说她的大名,多半是因为新王码。后来新王码被……边缘化了。2029年她重开老课题,没有经费,才需要找工作。她的精力在项目组用不完,老课题进展也很大:人类语言的隐喻体系。论文我就不背诵了。总之,我躺在岛上读,突然明白了大脑的另一个秘密。显而易见的秘密,但是当年霍金斯都没反应过来。
“类比是大脑网络构建的基本形式。前面我们说了,大脑的统一数据格式是组合序列。它怎么知道把谁跟谁横向连起来?结构相似的就连起来啊!相似的细胞组合,相似的神经冲动发生序列。隐喻是语言生长的基本形式。美国人吸毒吸高兴了,中国人喝酒喝高兴了,都叫‘high’或者‘高了’。这是方位隐喻,从百万年前就有的方位概念派生而来。英语把银行叫bank,所以把货币叫currency,把存钱叫deposit。这是连贯隐喻,从一组事物的机理构建另外一组。比喻是每个人的第一修辞手段,已经从底层的无意识上升为有意识。我们用类比思考,用隐喻扩展概念和语言,再倒过来用语言塑造大脑。(注:bank的原意是“堤坝”,currency的原意是“水流”,deposit的原意是“沉淀”。)
“我们对相似、类比、隐喻的依赖深入骨髓,统治我们每一种思维活动、每一种智力表现。我们不喜欢跟已知世界模型完全相同的信息,那叫重复,大脑的反应是厌倦、疲劳;我们也不喜欢完全找不到模板的信息,那叫陌生,大脑的反应是迷惑、恐惧。我们热爱的是相似:大部分相同,让大脑轻松理解;有一点区别,让连接再次延伸。这一点区别,就像dna复制中的误差,就像生物每一代的变异,是我们智慧的根本、创造力的源泉、上升的原动力。
“为什么我们都热爱音乐?音乐就是节奏序列大体相同,频率序列大体相似,但每一段、每一阶稍有变化。大脑最享受的体操,全员起舞。不信你把八度音阶的频率稍微改一点,不是前一阶的正好两倍,听听有多难受。为什么我们觉得美人的脸美?以前统计的学者说是因为对称,只说对一半。不信你找张美人图,把任意半边脸对折过去合成,看它怪不怪。大脑认为在对称的基础上稍有变化最美。过分对称的美女,知道给自己插上一朵鬓边花,点上一颗美人痣!”
乌玛·瑟曼和她的完全对称脸
礼堂的空气中充满电荷。一重又一重的隐喻,一波又一波的类比,穿透已知和未知的壁垒。一颗大脑在解释自身。诡异的递归行为变成汹涌的智力喷发,所有听众都吓到了。没人忍心鼓掌打断他,没人敢出声把他拉回议程的方向。